29 research outputs found

    New Applications of Differential Bounds of the SDS Structure

    Get PDF
    In this paper, we present some new applications of the bounds for the differential probability of a SDS (Substitution-Diffusion-Substitution) structure by Park et al. at FSE 2003. Park et al. have applied their result on the AES cipher which uses the SDS structure based on MDS matrices. We shall apply their result to practical ciphers that use SDS structures based on {0,1}-matrices of size n times n. These structures are useful because they can be efficiently implemented in hardware. We prove a bound on {0,1}-matrices to show that they cannot be MDS and are almost-MDS only when n=2,3 or 4. Thus we have to apply Park\u27s result whenever {0,1}-matrices where nβ‰₯5n \geq 5 are used because previous results only hold for MDS and almost-MDS diffusion matrices. Based on our bound, we also show that the {0,1}-matrix used in E2 is almost-optimal among {0,1}-matrices. Using Park\u27s result, we prove differential bounds for E2 and an MCrypton-like cipher, from which we can deduce their security against boomerang attack and some of its variants. At ICCSA 2006, Khoo and Heng constructed block cipher-based universal hash functions, from which they derived Message Authentication Codes (MACs) which are faster than CBC-MAC. Park\u27s result provides us with the means to obtain a more accurate bound for their universal hash function. With this bound, we can restrict the number of MAC\u27s performed before a change of MAC key is needed

    Parallelizing the Camellia and SMS4 Block Ciphers - Extended version

    Get PDF
    The n-cell GF-NLFSR (Generalized Feistel-NonLinear Feedback Shift Register) structure [8] is a generalized unbalanced Feistel network that can be considered as a generalization of the outer function FO of the KASUMI block cipher. An advantage of this cipher over other n-cell generalized Feistel networks, e.g. SMS4 [11] and Camellia [5], is that it is parallelizable for up to n rounds. In hardware implementations, the benefits translate to speeding up encryption by up to n times while consuming similar area and significantly less power. At the same time n-cell GF-NLFSR structures offer similar proofs of security against differential cryptanalysis as conventional n-cell Feistel structures. We also ensure that parallelized versions of Camellia and SMS4 are resistant against other block cipher attacks such as linear, boomerang, integral, impossible differential, higher order differential,interpolation, slide, XSL and related-key differential attacks

    Applying Time-Memory-Data Trade-Off to Meet-in-the-Middle Attack

    Get PDF
    In this paper, we present several new attacks on multiple encryption block ciphers based on the meet-in-the-middle attack. In the first attack (GDD-MTM), we guess a certain number of secret key bits and apply the meet-in-the-middle attack on multiple ciphertexts. The second attack (TMTO-MTM) is derived from applying the time-memory trade-off attack to the meet-in-the-middle attack on a single ciphertext. We may also use rainbow chains in the table construction to get the Rainbow-MTM attack. The fourth attack (BS-MTM) is defined by combining the time-memory-data trade-off attack proposed by Biryukov and Shamir to the meet-in-the-middle attack on multiple ciphertexts. Lastly, for the final attack (TMD-MTM), we apply the TMTO-Data curve, which demonstrates the general methodology for multiple data trade-offs, to the meet-in-the-middle attack. GDD-MTM requires no pre-processing, but the attack complexity is high while memory requirement is low. In the last four attacks, pre-processing is required but we can achieve lower (faster) online attack complexity at the expense of more memory in comparison with the GDD-MTM attack. To illustrate how the attacks may be used, we applied them in the cryptanalysis of triple DES. In particular, for the BS-MTM attack, we managed to achieve pre-computation and data complexity which are much lower while maintaining almost the same memory and online attack complexity, as compared to a time-memory-data trade-off attack by Biryukov et al. at SAC 2005. In all, our new methodologies offer viable alternatives and provide more flexibility in achieving time-memory-data trade-offs

    Cryptographic Properties and Application of a Generalized Unbalanced Feistel Network Structure (Revised Version)

    Get PDF
    In this paper, we study GF-NLFSR, a Generalized Unbalanced Feis- tel Network (GUFN) which can be considered as an extension of the outer function FO of the KASUMI block cipher. We show that the differential and linear probabilities of any n + 1 rounds of an n-cell GF-NLFSR are both bounded by p^2, where the corresponding probability of the round function is p. Besides analyzing security against differential and linear cryptanalysis, we provide a frequency distribution for upper bounds on the true differential and linear hull probabilities. From the frequency distribution, we deduce that the proportion of input-output differences/mask values with probability bounded by p^n is close to 1 whereas only a negligible proportion has probability bounded by p^2. We also recall an n^2-round integral attack distinguisher and (n^2+n-2)-round impossible impossible differential distinguisher on the n-cell GF-NLFSR by Li et al. and Wu et al. As an application, we design a new 30-round block cipher Four-Cell+ based on a 4-cell GF-NLFSR. We prove the security of Four-Cell+ against differential, linear, and boomerang attack. Four-Cell+ also resists existing key recovery attacks based on the 16-round integral attack distinguisher and 18-round impossible differential distinguisher. Furthermore, Four-Cell+ can be shown to be secure against other attacks such as higher order differential attack, cube attack, interpolation attack, XSL attack and slide attack

    Highly Nonlinear S-boxes with Reduced Bound on Maximum Correlation (Extended Abstract)

    No full text
    In this paper, we consider S-boxes with n (odd) input bits and m β‰₯ 2 output bits as combiners in stream cipher systems. We construct two classes of balanced S-boxes with nonlinearity 2 nβˆ’1 βˆ’ 2 (nβˆ’1)/2 for protection against correlation and linear approximation attacks. However, having a high nonlinearity may not be sufficient for security. Zhang and Chan [3] considered a more general correlation attack by using a nonlinear function of output bits. In this case, we will require the maximum correlation coefficients to be low in order to protect against their attack. They proved an upper bound for maximum correlation that is low for functions with high nonlinearity. We improve their result for our S-boxes by reducing their upper bound by a factor of √ 2. Thus, our S-boxes are more secure against general correlation attacks. Beside
    corecore